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Abstract: This paper deals with the combined harvesting of a prey-predator fishery with the Beddington-DeAngelis functional response 
[1,2]. The Beddington-DeAngelis functional response is similar to the Holling type II functional response but contains one extra term 
describing mutual interference by the predators. Here the prey species obeys the logistic law of growth [3]. The existence of the steady 
states of the dynamical system is discussed. Both local and global stability of all possible steady states are studied. It is also examined 
whether the system possesses any limit cycle. Existence of bionomic equilibrium is also examined. All the results are illustrated with the 
help of a numerical example. 
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1. INTRODUCTION: 
In nature there are many interactions between different 
species. One of the common interactions is that of prey and 
predator. A predator species kills the prey species and the 
prey species is killed and eaten by the predator. In the fish 
species, prey-predator interaction is a very common 
problem for extinction of the prey fish population. 
Moreover, common harvesting of prey-predator species is a 
global problem for extinction of both the species. For 
existence of the biological equilibrium of the fish 
populations, the Government or any private agencies 
should regulate the harvesting effort in order to control 
overexploitation of the fish species. 
Many researchers developed different types of exploited 
prey-predator models and discussed the biological 
equilibrium of the populations and their dynamical 
behaviour. Saha Ray and Chaudhuri [4] discussed a Lotka-
Volterra prey-predator model with harvesting and 
environmental perturbations. Bionomic exploitation of a 
Lotka-Voterra prey-predator system was studied by 
Chaudhuri and Saha Ray [5]. The optimal policy for 
combined harvesting of a prey-predator community was 
discussed by Mesterton-Giobbons [6]. Chaudhuri and 
Pradhan [7] developed a model of combined harvesting of a 
prey-predator fishery with low predator density and the 
prey species obeying the logistic law of growth. Kar [8] 
developed a prey-predator model with stage-structure for 
predator and selective harvesting of prey species. 
Holling type I (𝑓𝑓(𝑥𝑥) = 𝛼𝛼𝑥𝑥), II �𝑓𝑓(𝑥𝑥) = 𝛼𝛼𝑥𝑥

𝑥𝑥+𝛽𝛽
� and III �𝑓𝑓(𝑥𝑥) =

𝛼𝛼𝑥𝑥2

𝑥𝑥2+𝛽𝛽
� [9] functional responses are the most popularly used 

functional responses for the pre-predator models. But all 

these functional responses are prey dependent and so in 
some situation there may be an unrealistic population 
dynamics of the prey or predator. This needs a prey-
predator dependent functional responses 𝑓𝑓(𝑥𝑥,𝑦𝑦). The 
Beddington-DeAngelis type functional response [1,2], 
𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝛼𝛼𝑥𝑥

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
 (𝑏𝑏 > 0, 𝑐𝑐 > 0,𝛼𝛼 > 0) is one of the more 

realistic functional responses. It is similar to the Holling 
type II functional response but has an extra term y in the 
denominator of 𝑓𝑓(𝑥𝑥,𝑦𝑦) which models mutual interference 
between the predators. 
In this paper the dynamics of an exploited prey-predator 
fishery with Beddington-DeAngelis type functional 
response is studied. The dynamical behaviour of the system 
is first studied. It is shown that the boundary and the 
interior equilibrium points exist under certain conditions 
which are amenable to interpretations relevant to the 
model. Both local and global stability of the steady states 
are then discussed. Existence of limit cycles is also 
examined. The Bionomic equilibrium of the system is 
discussed next. A numerical example is taken to illustrate 
the results. 
 
2. THE MATHEMATICAL MODEL: 
A general prey-predator model can be described as 

�
𝑑𝑑𝑥𝑥 (𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑖𝑖(𝑥𝑥) − 𝑝𝑝𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑦𝑦
𝑑𝑑𝑦𝑦 (𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑞𝑞𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑦𝑦 − 𝑚𝑚(𝑦𝑦)
�  𝑥𝑥(0) > 0,𝑦𝑦(0) > 0           (1)        

where 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) be the population density of the prey 
and the predator species respectively at any time t, 𝑖𝑖(𝑥𝑥) is 
the intrinsic growth rate of the prey, 𝑓𝑓(𝑥𝑥,𝑦𝑦) is the functional 
response which represents per capita predator feeding rate 
and 𝑚𝑚(𝑦𝑦) is the mortality rate of the predator. 
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Here we consider a prey-predator model of fish species 
where the intrinsic growth rate of the prey obeys the 
logistic growth function [3] i.e., 𝑖𝑖(𝑥𝑥) = 𝑟𝑟𝑥𝑥 �1 − 𝑥𝑥

𝑘𝑘
� and the 

mortality rate of the predator is 𝑑𝑑𝑦𝑦. The Beddington-
DeAngelis [1,2] type functional response 

 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝛼𝛼𝑥𝑥
𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦

 (𝑏𝑏 > 0, 𝑐𝑐 > 0,𝛼𝛼 > 0) is considered here 

which is more realistic than the functional responses 
Holling type I,II,III [9]  as described by D.T. Dimitrov and 
H.V. Kojouharov [10].  

Now, 𝑓𝑓(𝑥𝑥,𝑦𝑦) > 0 , 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= (𝑏𝑏+𝑦𝑦)𝛼𝛼
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)2 > 0, 

 𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= − 𝛼𝛼𝑥𝑥
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)2 < 0  ∀𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅2

+ = {(𝑥𝑥,𝑦𝑦), 𝑥𝑥 > 0,𝑦𝑦 > 0} 

imply that in the positive quadrant of 𝑅𝑅2, per capita 
predator feeding rate is always positive and is an increasing 
function of x and decreasing function of y. Biological 
implication of these results is, in the increase of the prey 
species the predator feeding rate also increases and in the 
increase of the predator species the feeding rate decreases 
due to interspecies competitions.  

After the above consideration, the system (1) becomes 

�
𝑑𝑑𝑥𝑥 (𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑥𝑥 �1 − 𝑥𝑥
𝑘𝑘
� − 𝑎𝑎𝑥𝑥𝑦𝑦

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
𝑑𝑑𝑦𝑦 (𝑡𝑡)
𝑑𝑑𝑡𝑡

=  𝑒𝑒𝑥𝑥𝑦𝑦
𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦

− 𝑑𝑑𝑦𝑦              
  � 𝑥𝑥(0) > 0,𝑦𝑦(0) > 0            (2) 

where r, k, a, b, c, d, e are all positive constants. 

Here 𝑟𝑟 = intrinsic growth rate of the prey species, 
        𝑘𝑘 = environmental carrying capacity of the prey   

population, 
        𝑎𝑎 = capturing rate of the prey by the predator, 
        𝑒𝑒 = maximal predator growth rate, 
        𝑑𝑑 = per capita death rate of the predator. 
 
We now assume that both the species are subjected to a 
combined harvesting effort E. 

Therefore, the system of equations (2) becomes 

�
𝑑𝑑𝑥𝑥 (𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑥𝑥 �1 − 𝑥𝑥
𝑘𝑘
� − 𝑎𝑎𝑥𝑥𝑦𝑦

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
− 𝑞𝑞1𝐸𝐸𝑥𝑥

𝑑𝑑𝑦𝑦 (𝑡𝑡)
𝑑𝑑𝑡𝑡

=  𝑒𝑒𝑥𝑥𝑦𝑦
𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦

− 𝑑𝑑𝑦𝑦 − 𝑞𝑞2𝐸𝐸𝑦𝑦             
  � 𝑥𝑥(0) > 0,𝑦𝑦(0) > 0    (3) 

where 𝑞𝑞1 and 𝑞𝑞2 are catchability coefficients of the prey and 
predator species respectively. Now we intend to study the 
characteristics of the exploited prey-predator fish species 
described by the dynamical system (3) and also some 
economic implications of the harvesting policy.  

3. DYNAMICAL BEHAVIOUR: 
A) Steady states 

𝑃𝑃0(0,0) is the trivial steady state of the system of equations 
(3). If 𝑥𝑥 = 0, then 𝑑𝑑𝑦𝑦

𝑑𝑑𝑡𝑡
= −(𝑑𝑑 + 𝑞𝑞2)𝑦𝑦. This implies 𝑦𝑦(𝑡𝑡) =

𝐶𝐶0𝑒𝑒−(𝑑𝑑+𝑞𝑞2𝐸𝐸)𝑡𝑡  i.e. 𝑦𝑦(𝑡𝑡) → 0 as 𝑡𝑡 → ∞. This implies that in 
absence of prey, the predator species exponentially extinct. 
Biologically it is true that a predator species cannot live 
without prey species. 

Again 𝑃𝑃1(�̅�𝑥, 0) is the boundary steady state of the system (3) 
if 𝐸𝐸 < 𝑟𝑟

𝑞𝑞1
 where �̅�𝑥 = 𝑘𝑘 �1 − 𝑞𝑞1𝐸𝐸

𝑟𝑟
�.                                           (4) 

In fishery literature the ratio of the biotic potential 𝑟𝑟 to the 
catchability coefficient 𝑞𝑞1 is called the BTP (biotechnical 
productivity) [11]. If 𝐸𝐸 = 𝑟𝑟

𝑞𝑞1
, then �̅�𝑥 = 0 i.e. in absence of 

predator, if the harvesting effort is equal to the prey BTP, 
the prey species extinct and 𝑃𝑃1 coincides with the trivial 
steady state 𝑃𝑃0. Therefore, in order to exist the boundary 
steady state 𝑃𝑃1(�̅�𝑥, 0), the effort level should be less than the 
prey BTP. 

𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) is the interior equilibrium point of the dynamical 
system (3) where 𝑥𝑥∗ and 𝑦𝑦∗ are given by  

𝑥𝑥∗ =  𝑘𝑘𝑘𝑘+�𝑘𝑘2𝑘𝑘2+4𝑘𝑘𝐶𝐶
2

> 0 ∀𝑘𝑘,𝐶𝐶                                               (5) 

𝑦𝑦∗ = � 𝑒𝑒
𝑑𝑑+𝑞𝑞2𝐸𝐸

− 𝑐𝑐� 𝑥𝑥∗ − 𝑏𝑏                                                        (6) 

where 𝑘𝑘 = �1 − 𝑎𝑎
𝑟𝑟
− 𝑞𝑞1𝐸𝐸

𝑟𝑟
� + 𝑎𝑎𝑐𝑐 (𝑑𝑑+𝑞𝑞2𝐸𝐸)

𝑟𝑟𝑒𝑒
                                   (7) 

and 𝐶𝐶 = 𝑎𝑎𝑏𝑏 (𝑑𝑑+𝑞𝑞2𝐸𝐸)
𝑟𝑟𝑒𝑒

> 0                                                           (8) 

The necessary condition for 𝑦𝑦∗ > 0 is 

 𝑒𝑒 > 𝑐𝑐(𝑑𝑑 + 𝑞𝑞2𝐸𝐸) = 𝐿𝐿(> 0) (say)                                          (9) 

So for the existence of the interior equilibrium point of the 
system (3) one of the necessary conditions is that the 
maximal growth rate of the predator is greater than 𝐿𝐿. 
Condition (9) is equivalent to 𝐸𝐸 < 𝑒𝑒−𝑐𝑐𝑑𝑑

𝑐𝑐𝑞𝑞2
= 𝑀𝑀(say) > 0 by (8).                       

(10)  

Therefore, 𝑀𝑀 is the maximum effort level for existence of 
the interior equilibrium point of the system (3). But the 
above two conditions (9) and (10) are not sufficient for 
existence of the interior equilibrium point of the dynamical 
system (3). For  𝑦𝑦∗ > 0, it is also necessary that 

 𝑥𝑥∗ > 𝑏𝑏(𝑑𝑑+𝑞𝑞2𝐸𝐸)
𝑒𝑒−𝑐𝑐(𝑑𝑑+𝑞𝑞2𝐸𝐸)

= 𝑚𝑚 (say).                                                    (11) 

Therefore, 𝑚𝑚 is the greatest lower bound (infimum) of the 
prey population for existence of the non-trivial steady state 
of the predator species. If prey species is below the level 𝑚𝑚, 
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then 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

< 0 and the predator species exponentially dies out. 
Thus we have the following theorem: 

Theorem 1: The necessary conditions for existence of the 
non-trivial equilibrium point 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) of the dynamical 
system (3) are 

 (i) 𝑒𝑒 > 𝑐𝑐(𝑑𝑑 + 𝑞𝑞2𝐸𝐸) = 𝐿𝐿  (ii) 𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑒𝑒−𝑐𝑐𝑑𝑑
𝑐𝑐𝑞𝑞2

= 𝑀𝑀  (iii) inf{𝑥𝑥(𝑡𝑡)} =
𝑏𝑏(𝑑𝑑+𝑞𝑞2𝐸𝐸)
𝑒𝑒−𝑐𝑐(𝑑𝑑+𝑞𝑞2𝐸𝐸)

= 𝑚𝑚. 

B) Local stability 

The variational matrix of the dynamical system (3) is 

𝑉𝑉(𝑥𝑥,𝑦𝑦) = �𝐽𝐽11 𝐽𝐽12
𝐽𝐽21 𝐽𝐽22

� where 

𝐽𝐽11 = 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
� = 𝑟𝑟 − 2𝑟𝑟𝑥𝑥

𝑘𝑘
− 𝑎𝑎𝑦𝑦

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
+ 𝑎𝑎𝑐𝑐𝑥𝑥𝑦𝑦

(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)2 − 𝑞𝑞1𝐸𝐸 , 

 𝐽𝐽12 = 𝜕𝜕
𝜕𝜕𝑦𝑦
�𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
� = − (𝑏𝑏+𝑐𝑐𝑥𝑥 )𝑎𝑎𝑥𝑥

(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)2, 

𝐽𝐽21 = 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡
� = 𝑒𝑒𝑦𝑦 (𝑏𝑏+𝑦𝑦)

(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)2 , 

 𝐽𝐽22 = 𝜕𝜕
𝜕𝜕𝑦𝑦
�𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡
� = 𝑒𝑒𝑥𝑥

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
− 𝑒𝑒𝑥𝑥𝑦𝑦

(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)2 − 𝑑𝑑 − 𝑞𝑞2𝐸𝐸. 

At 𝑃𝑃0(0,0), 𝑉𝑉(0,0) = �
𝑟𝑟 − 𝑞𝑞1𝐸𝐸 0

0 −(𝑑𝑑 + 𝑞𝑞2𝐸𝐸)�. 

Therefore, the eigen values of 𝑉𝑉(0,0) are  𝑟𝑟 − 𝑞𝑞1𝐸𝐸 and 
−(𝑑𝑑 + 𝑞𝑞2𝐸𝐸). 

If the prey BTP  𝑟𝑟
𝑞𝑞1

> 𝐸𝐸, then the trivial steady state 𝑃𝑃0(0,0) 

is a saddle point. On the other hand if the prey BTP  𝑟𝑟
𝑞𝑞1

< 𝐸𝐸 

then the trivial steady state 𝑃𝑃0(0,0) is a stable node. But in 
this case non-trivial steady state 𝑃𝑃1(�̅�𝑥, 0) does not exist. 
Therefore, for existence of the prey species in absence of 
predator, the effort level for harvesting of the prey species 
must be less than the prey BTP ( 𝑟𝑟

𝑞𝑞1
) and so the trivial steady 

state 𝑃𝑃0(0,0) of the system (3) is always a saddle point. 

At 𝑃𝑃1(�̅�𝑥, 0), 𝑉𝑉(�̅�𝑥, 0) = �
𝑟𝑟 − 2𝑟𝑟𝑥𝑥̅

𝑘𝑘
− 𝑞𝑞1𝐸𝐸 − 𝑎𝑎𝑥𝑥̅

𝑏𝑏+𝑐𝑐𝑥𝑥̅

0 𝑒𝑒𝑥𝑥̅
𝑏𝑏+𝑐𝑐𝑥𝑥̅

− 𝑑𝑑 − 𝑞𝑞2𝐸𝐸
�. 

Therefore, the eigen values of 𝑉𝑉(�̅�𝑥, 0) are – (𝑟𝑟 − 𝑞𝑞1𝐸𝐸) < 0 
since 𝐸𝐸 < 𝑟𝑟

𝑞𝑞1
 and 𝑒𝑒𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)

𝑏𝑏𝑟𝑟+𝑐𝑐𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)
− 𝑑𝑑 − 𝑞𝑞2𝐸𝐸. 

So 𝑃𝑃1(�̅�𝑥, 0) is a saddle point or a stable node according as  
𝑒𝑒𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)

𝑏𝑏𝑟𝑟+𝑐𝑐𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)
− 𝑑𝑑 − 𝑞𝑞2𝐸𝐸 > 𝑜𝑜𝑟𝑟 < 0.                                         (12) 

When 𝑒𝑒 < 𝑐𝑐(𝑑𝑑 + 𝑞𝑞2𝐸𝐸), then  𝑒𝑒𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)
𝑏𝑏𝑟𝑟+𝑐𝑐𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)

− 𝑑𝑑 − 𝑞𝑞2𝐸𝐸 < 0 and 

then 𝑃𝑃1(�̅�𝑥, 0)is a stable node. But in that case the interior 
equilibrium point 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) does not exist by theorem 1. 

At 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗), 𝑉𝑉(𝑥𝑥∗,𝑦𝑦∗) = �
𝑎𝑎𝑐𝑐𝑥𝑥∗𝑦𝑦∗

𝐴𝐴
− 𝑟𝑟𝑥𝑥∗

𝑘𝑘
− 𝑎𝑎𝑥𝑥∗(𝑏𝑏+𝑐𝑐𝑥𝑥∗)

𝐴𝐴
𝑒𝑒𝑦𝑦∗(𝑏𝑏+𝑦𝑦∗)

𝐴𝐴
− 𝑒𝑒𝑥𝑥∗𝑦𝑦∗

𝐴𝐴

�  

where 𝐴𝐴 = (𝑏𝑏 + 𝑐𝑐𝑥𝑥∗ + 𝑦𝑦∗)2. 

𝑇𝑇𝑟𝑟𝑉𝑉(𝑥𝑥∗,𝑦𝑦∗) = 𝑎𝑎𝑐𝑐𝑥𝑥∗𝑦𝑦∗

𝐴𝐴
− 𝑟𝑟𝑥𝑥∗

𝑘𝑘
− 𝑒𝑒𝑥𝑥∗𝑦𝑦∗

𝐴𝐴
                                      (13) 

𝑑𝑑𝑒𝑒𝑡𝑡𝑉𝑉(𝑥𝑥∗,𝑦𝑦∗) = 𝑒𝑒𝑟𝑟𝑥𝑥∗2𝑦𝑦∗

𝑘𝑘𝐴𝐴
+ 𝑒𝑒𝑎𝑎𝑏𝑏 𝑥𝑥∗𝑦𝑦∗

𝐴𝐴2 (𝑏𝑏 + 𝑦𝑦∗ + 𝑐𝑐𝑥𝑥∗) > 0        (14) 

If 𝑇𝑇𝑟𝑟𝑉𝑉(𝑥𝑥∗,𝑦𝑦∗) < 0, then the non-zero equilibrium point 
𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) is stable. Otherwise it is unstable. From (13) it is 
clear that 𝑒𝑒 > 𝑎𝑎𝑐𝑐 is the sufficient condition for the steady 
state 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) is locally stable. 

If 𝑑𝑑 > 𝑎𝑎 i.e. mortality rate of predator is greater than the 
prey capturing rate by the predator, then by  of theorem-1 
(i), 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) is always stable. But if 𝑑𝑑 < 𝑎𝑎, then 𝐸𝐸 > 𝑎𝑎−𝑑𝑑

𝑞𝑞
 is 

the sufficient condition for local stability of the point 
𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗). 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) will be stable node or stable focus 
according as the characteristic roots of the variational 
matrix 𝑉𝑉(𝑥𝑥∗,𝑦𝑦∗) are real negative or complex conjugate 
with negative real parts. Thus we have the following 
theorem: 

Theorem 2: Whenever the non-trivial equilibrium point 
𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) of the system of equations (3) exists then (i) if the 
mortality rate of predator is greater than the prey capturing 
rate (𝑑𝑑 > 𝑎𝑎), then 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) is always locally stable and (ii) 
if 𝑑𝑑 < 𝑎𝑎, then 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) is locally stable if 𝐸𝐸 > 𝑎𝑎−𝑑𝑑

𝑞𝑞
. 

Remark: Condition (ii) of theorem-2 is the sufficient 
condition not necessary. 

C) Limit cycles 

Theorem 3: If the harvesting effort is less than or equal to 
the prey BTP �𝐸𝐸 ≤ 𝑟𝑟

𝑞𝑞1
�, then the system of equations (3) 

does not possess limit cycles in the region 𝑅𝑅2
+ =

{(𝑥𝑥,𝑦𝑦); 𝑥𝑥 > 0,𝑦𝑦 > 0}. 

Proof: We now examine the possibility of existence of a 
limit cycle of the non-linear system (3) by using Bendixon-
Dulac test. 
Let us consider a transformation 𝑑𝑑𝑡𝑡 = (𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦)𝑑𝑑𝑑𝑑. 
Denoting new argument 𝑑𝑑 with 𝑡𝑡 again, the system (3) can 
be written as  
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑥𝑥 �1 −
𝑥𝑥
𝑘𝑘�

(𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦) − 𝑎𝑎𝑥𝑥𝑦𝑦 − 𝑞𝑞1𝐸𝐸𝑥𝑥(𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦) 
            = 𝑓𝑓(𝑥𝑥,𝑦𝑦)  
𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑒𝑒𝑥𝑥𝑦𝑦 − 𝑑𝑑𝑦𝑦(𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦) − 𝑞𝑞2𝐸𝐸𝑦𝑦(𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦) = 𝑔𝑔(𝑥𝑥,𝑦𝑦). 
Define a Dulac function 𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑥𝑥−1𝑦𝑦−1. 
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Now, 𝜕𝜕
𝜕𝜕𝑥𝑥

(𝑘𝑘𝑓𝑓) + 𝜕𝜕
𝜕𝜕𝑦𝑦

(𝑘𝑘𝑔𝑔) = − 1
𝑘𝑘
𝑟𝑟𝑦𝑦−1(𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦) +

                        𝑐𝑐𝑟𝑟𝑦𝑦−1 �1 − 𝑥𝑥
𝑘𝑘
� − 𝑞𝑞1𝑐𝑐𝐸𝐸𝑦𝑦−1 − 𝑑𝑑𝑥𝑥−1 − 𝑞𝑞2𝐸𝐸𝑥𝑥−1.  

                      = − 𝑏𝑏𝑟𝑟
𝑘𝑘𝑦𝑦
− 2𝑐𝑐𝑟𝑟𝑥𝑥

𝑘𝑘𝑦𝑦
− 𝑟𝑟

𝑘𝑘
− 𝑑𝑑

𝑥𝑥
− 𝑞𝑞1𝐸𝐸

𝑥𝑥
− 𝑐𝑐

𝑦𝑦
(𝑞𝑞1𝐸𝐸 − 𝑟𝑟) < 0 if 

 𝐸𝐸 ≤ 𝑟𝑟
𝑞𝑞1

 ∀𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅2
+. 

Hence the expression  𝜕𝜕
𝜕𝜕𝑥𝑥

(𝑘𝑘𝑓𝑓) + 𝜕𝜕
𝜕𝜕𝑦𝑦

(𝑘𝑘𝑔𝑔) does not change the 

sign in 𝑅𝑅2
+ and so the system (3) does not possess the limit 

cycle in 𝑅𝑅2
+.  

Remark: 𝐸𝐸 ≤ 𝑟𝑟
𝑞𝑞1

 is the sufficient condition for non existence 

of the limit cycle in 𝑅𝑅2
+ but not necessary. 

D) Global stability 
We have already noted that the dynamical system (3) has a 
unique positive non-trivial equilibrium point at 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) 
provided the conditions of theorem-1 hold. We now 
examine the global stability of 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) of the system (3). 
For the fixed environmental carrying capacity k for the prey 
species and for existence of the steady state 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗), the 
prey species must be bounded in the range 𝑚𝑚 < 𝑥𝑥 < 𝑘𝑘.  
Also for the natural mortality, effects of harvesting and 
crowding effects the predator species must has an upper 
bound.  So the solutions of the dynamical (3) are uniformly 
bounded in a finite region Ω1in the positive quadrant of x-y 
plane. 

We define a Lyapunov function 

  𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝑥𝑥 − 𝑥𝑥∗ − 𝑥𝑥∗𝑙𝑙𝑙𝑙 � 𝑥𝑥
𝑥𝑥∗
� + 𝜇𝜇 �𝑦𝑦 − 𝑦𝑦∗ − 𝑦𝑦∗𝑙𝑙𝑙𝑙 � 𝑦𝑦

𝑦𝑦∗
�� where 

𝜇𝜇 is a suitable positive constant to be determined in the 
subsequence steps. 𝐿𝐿(𝑥𝑥,𝑦𝑦) is a positive definite function in 
the region Ω1 except at 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) where it vanishes. 

Here  𝐿𝐿(𝑥𝑥∗,𝑦𝑦∗) = 0  

and lim(𝑥𝑥 ,𝑦𝑦)→(0,0) 𝐿𝐿(𝑥𝑥,𝑦𝑦) = lim(𝑥𝑥 ,𝑦𝑦)→(∞,∞) 𝐿𝐿(𝑥𝑥,𝑦𝑦) = ∞. The time 
derivative of 𝐿𝐿(𝑥𝑥,𝑦𝑦) along the solution of (3) is 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= �𝑥𝑥−𝑥𝑥
∗

𝑥𝑥
� 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝜇𝜇 �𝑦𝑦−𝑦𝑦
∗

𝑦𝑦
� 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

  

= (𝑥𝑥 − 𝑥𝑥∗) �𝑟𝑟 �1 −
𝑥𝑥
𝑘𝑘�

−
𝑎𝑎𝑦𝑦

𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦
− 𝑞𝑞1𝐸𝐸� 

                         +𝜇𝜇(𝑦𝑦 − 𝑦𝑦∗) � 𝑒𝑒𝑥𝑥
𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦

− 𝑑𝑑 − 𝑞𝑞2𝐸𝐸�  

= (𝑥𝑥 − 𝑥𝑥∗) �𝑟𝑟 �1 −
𝑥𝑥
𝑘𝑘�

−
𝑎𝑎𝑦𝑦

𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦
− 𝑟𝑟 �1 −

𝑥𝑥∗

𝑘𝑘
�

+
𝑎𝑎𝑦𝑦∗

𝑏𝑏 + 𝑐𝑐𝑥𝑥∗ + 𝑦𝑦∗�
 

                                    +𝜇𝜇(𝑦𝑦 − 𝑦𝑦∗) � 𝑒𝑒𝑥𝑥
𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦

− 𝑒𝑒𝑥𝑥∗

𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗
�  

= (𝑥𝑥 − 𝑥𝑥∗) �−
𝑟𝑟
𝑘𝑘

(𝑥𝑥 − 𝑥𝑥∗) −
𝑎𝑎𝑏𝑏(𝑦𝑦 − 𝑦𝑦∗) + 𝑎𝑎𝑐𝑐(𝑥𝑥∗𝑦𝑦 − 𝑦𝑦∗𝑥𝑥)
(𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦)(𝑏𝑏 + 𝑐𝑐𝑥𝑥∗ + 𝑦𝑦∗)

� 

                    +𝜇𝜇(𝑦𝑦 − 𝑦𝑦∗) �𝑒𝑒𝑏𝑏 (𝑥𝑥−𝑥𝑥∗)−𝑒𝑒(𝑥𝑥∗𝑦𝑦−𝑦𝑦∗𝑥𝑥)
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)(𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗)

�  

= − 𝑟𝑟
𝑘𝑘

(𝑥𝑥 − 𝑥𝑥∗)2 − 𝑎𝑎𝑏𝑏 (𝑥𝑥−𝑥𝑥∗)(𝑦𝑦−𝑦𝑦∗)
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)(𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗)

− 𝑎𝑎𝑐𝑐 (𝑥𝑥−𝑥𝑥∗)(𝑥𝑥∗𝑦𝑦−𝑦𝑦∗𝑥𝑥)
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)(𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗)

  

           + 𝜇𝜇𝑒𝑒𝑏𝑏 (𝑥𝑥−𝑥𝑥∗)(𝑦𝑦−𝑦𝑦∗)
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)(𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗)

− 𝜇𝜇𝑒𝑒 (𝑦𝑦−𝑦𝑦∗)(𝑥𝑥∗𝑦𝑦−𝑦𝑦∗𝑥𝑥)
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)(𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗)

  

= − 𝑟𝑟
𝑘𝑘

(𝑥𝑥 − 𝑥𝑥∗)2 − 𝑎𝑎𝑐𝑐 (𝑥𝑥−𝑥𝑥∗)(𝑥𝑥∗𝑦𝑦−𝑦𝑦∗𝑥𝑥)
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)(𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗)

− 𝑎𝑎(𝑦𝑦−𝑦𝑦∗)(𝑥𝑥∗𝑦𝑦−𝑦𝑦∗𝑥𝑥)
(𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦)(𝑏𝑏+𝑐𝑐𝑥𝑥∗+𝑦𝑦∗)

   

for 𝜇𝜇 = 𝑎𝑎
𝑒𝑒

> 0. 

= −
𝑟𝑟
𝑘𝑘

(𝑥𝑥 − 𝑥𝑥∗)2 −
𝑎𝑎(𝑥𝑥∗𝑦𝑦 − 𝑦𝑦∗𝑥𝑥)(𝑐𝑐𝑥𝑥 + 𝑦𝑦 − 𝑐𝑐𝑥𝑥∗ − 𝑦𝑦∗)

(𝑏𝑏 + 𝑐𝑐𝑥𝑥 + 𝑦𝑦)(𝑏𝑏 + 𝑐𝑐𝑥𝑥∗ + 𝑦𝑦∗)
< 0  

∀ (𝑥𝑥,𝑦𝑦) ∈ Ω2 ∩Ω3 where 

Ω2 = {(𝑥𝑥,𝑦𝑦): 𝑥𝑥∗𝑦𝑦 − 𝑦𝑦∗𝑥𝑥 ≥ 0, 𝑐𝑐𝑥𝑥 + 𝑦𝑦 − 𝑐𝑐𝑥𝑥∗ − 𝑦𝑦∗ ≥ 0} and 

Ω3 = {(𝑥𝑥,𝑦𝑦): 𝑥𝑥∗𝑦𝑦 − 𝑦𝑦∗𝑥𝑥 ≤ 0, 𝑐𝑐𝑥𝑥 + 𝑦𝑦 − 𝑐𝑐𝑥𝑥∗ − 𝑦𝑦∗ ≤ 0}.  

Also  𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 0 at 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗). 

Hence by Lassalle’s invariance principle [12], 𝑃𝑃2(𝑥𝑥∗,𝑦𝑦∗) is 
globally asymptotically stable for all (𝑥𝑥,𝑦𝑦) ∈ Ω where 
Ω = Ω1 ∩Ω2 ∩Ω3. 

4. BIONOMIC EQUILIBRIUM: 
The term bionomic equilibrium is an amalgamation of the 
concepts of biological equilibrium as well as economic 
equilibrium. We have already find the biological equilibrium 
which are given by �̇�𝑥 = �̇�𝑦 = 0. The economic equilibrium is 
said to be achieved when the total revenue obtained by 
selling the harvested biomass  (TR) equals the total cost for 
the effort devoted to harvesting (TC). 
Let 𝑐𝑐𝑝𝑝 = fishing cost per unit effort, 
       𝑝𝑝1 =  price per unit bio-mass of the prey species and  
       𝑝𝑝2 =  price per unit bio-mass of the predator species. 
The economic net revenue at any time is given by 
 𝜋𝜋(𝑥𝑥,𝑦𝑦,𝐸𝐸) = TR − TC = 𝑝𝑝1𝑞𝑞1𝐸𝐸𝑥𝑥 + 𝑝𝑝2𝑞𝑞2𝐸𝐸𝑦𝑦 − 𝑐𝑐𝑝𝑝𝐸𝐸                (15) 
The bionomic equilibrium (𝑥𝑥∞,𝑦𝑦∞,𝐸𝐸∞) is given as a solution 
of the �̇�𝑥 = �̇�𝑦 = 𝜋𝜋 = 0. i.e.  
𝑟𝑟 �1 − 𝑥𝑥

𝑘𝑘
� − 𝑎𝑎𝑦𝑦

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
− 𝑞𝑞1𝐸𝐸 = 0                                                (16) 

𝑒𝑒𝑥𝑥
𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦

− 𝑑𝑑 − 𝑞𝑞2𝐸𝐸 = 0                                                              (17) 

𝑝𝑝1𝑞𝑞1𝑥𝑥 + 𝑝𝑝2𝑞𝑞2𝑦𝑦 − 𝑐𝑐𝑝𝑝 = 0                                                         (18) 
Eliminating 𝐸𝐸 from (16) and (17), we have 
  𝑞𝑞2𝑟𝑟 �1 − 𝑥𝑥

𝑘𝑘
 � − 𝑎𝑎𝑞𝑞2𝑦𝑦

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
− 𝑒𝑒𝑞𝑞1𝑥𝑥

𝑏𝑏+𝑐𝑐𝑥𝑥+𝑦𝑦
+ 𝑞𝑞1𝑑𝑑 = 0                          (19) 

From (18), we have 𝑦𝑦 = 𝑐𝑐𝑝𝑝−𝑝𝑝1𝑞𝑞1𝑥𝑥

𝑝𝑝2𝑞𝑞2
                                          (20) 

Eliminating 𝑦𝑦 from (19) and (20), we have 
  𝐴𝐴0𝑥𝑥2 − 𝐴𝐴1𝑥𝑥 + 𝐴𝐴2 = 0                                                           (21) 
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where 𝐴𝐴0 = 𝑝𝑝1𝑞𝑞1
2𝑟𝑟

𝑘𝑘𝑝𝑝2𝑞𝑞2
− 𝑞𝑞1𝑟𝑟𝑐𝑐

𝑘𝑘
, 

  𝐴𝐴1 = 𝑐𝑐𝑞𝑞1𝑟𝑟 −
𝑝𝑝1𝑞𝑞1

2

𝑝𝑝2𝑞𝑞2
− 𝑏𝑏𝑞𝑞1𝑟𝑟

𝑘𝑘
− 𝑞𝑞1𝑟𝑟𝑐𝑐𝑝𝑝

𝑘𝑘𝑝𝑝2𝑞𝑞2
+ 𝑎𝑎𝑝𝑝1𝑞𝑞2

𝑝𝑝2
− 𝑒𝑒𝑞𝑞1 + 𝑞𝑞1𝑑𝑑𝑐𝑐 −

𝑝𝑝1𝑞𝑞1
2𝑑𝑑

𝑝𝑝2𝑞𝑞2
, 

  𝐴𝐴2 = 𝑞𝑞1𝑏𝑏𝑟𝑟 + 𝑞𝑞1𝑐𝑐𝑝𝑝
𝑝𝑝2𝑞𝑞2

− 𝑎𝑎𝑐𝑐𝑝𝑝
𝑝𝑝2

+ 𝑞𝑞1𝑏𝑏𝑑𝑑 + 𝑞𝑞1𝑐𝑐𝑝𝑝𝑑𝑑

𝑝𝑝2𝑞𝑞2
 . 

If 𝑥𝑥∞ be the positive root of the equation (21), then from (20) 
we have 𝑦𝑦∞ = 𝑐𝑐𝑝𝑝−𝑝𝑝1𝑞𝑞1𝑥𝑥∞

𝑝𝑝2𝑞𝑞2
  and from (17) we have 

 𝐸𝐸∞ = 1
𝑞𝑞2
� 𝑒𝑒𝑥𝑥∞
𝑏𝑏+𝑐𝑐𝑥𝑥∞+𝑦𝑦∞

− 𝑑𝑑�. Therefore, (𝑥𝑥∞,𝑦𝑦∞,𝐸𝐸∞) be the 

bionomic equilibrium provided 𝑥𝑥∞ < 𝑐𝑐𝑝𝑝
𝑝𝑝1𝑞𝑞1

 and 𝑑𝑑 < 𝑒𝑒𝑥𝑥∞
𝑏𝑏+𝑐𝑐𝑥𝑥∞+𝑦𝑦∞

.  

 
5. NUMERICAL EXAMPLE: 
Let 𝑟𝑟 = 5, 𝑘𝑘 = 100,𝑎𝑎 = 0.3, 𝑏𝑏 = 1, 𝑐𝑐 = 2, 𝑑𝑑 = 0.25, 𝑒𝑒 = 4,
𝑞𝑞1 = 0.05, 𝑞𝑞2 = 0.07,𝐸𝐸 = 20 in appropriate units. 

Here the harvesting effort 𝐸𝐸(= 20) is less than the prey BTP 
( 𝑟𝑟
𝑞𝑞1

= 100), so the boundary equilibrium exists and 𝑃𝑃1(80,0) 

is the boundary equilibrium of the system (3). 

Using the above parameter values we have, 𝐿𝐿 =
𝑐𝑐(𝑑𝑑 + 𝑞𝑞2𝐸𝐸) = 3.3, 𝑒𝑒 = 4, and 𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 = 25. So all the necessary 
conditions for existence of the non-trivial equilibrium point 
for the prey species are satisfied. From (7) and (8) we have 
𝑘𝑘 = 0.7895 and 𝐶𝐶 = 0.02475 respectively. Using these 
values of B and C, from (5) we have 𝑥𝑥∗ = 78.98.  From (10), 
𝑚𝑚 = 𝑖𝑖𝑙𝑙𝑓𝑓𝑥𝑥(𝑡𝑡) = 𝑏𝑏(𝑑𝑑+𝑞𝑞2𝐸𝐸)

𝑒𝑒−𝑐𝑐(𝑑𝑑+𝑞𝑞2𝐸𝐸)
= 2.358 < 𝑥𝑥∗, so, 𝑦𝑦∗ exists and 

from (6), we have 𝑦𝑦∗ = 32.51. Therefore, 𝑃𝑃2(78.98, 32.51) is 
the non-trivial equilibrium point of the dynamical system 
(3). 
Since the effort is less than the prey BTP, so the trivial 
steady state 𝑃𝑃0(0,0) is a saddle point of the system (3). From 
(11) we have   𝑒𝑒𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)

𝑏𝑏𝑟𝑟+𝑐𝑐𝑘𝑘 (𝑟𝑟−𝑞𝑞1𝐸𝐸)
− 𝑑𝑑 − 𝑞𝑞2𝐸𝐸 = 0.338 > 0. So the 

boundary equilibrium 𝑃𝑃1(80,0) of the system (3) is a saddle 
point. 
From (12) and (13) we have, 𝑇𝑇𝑟𝑟𝑉𝑉(78.98, 32.51) = −4.187128 
and 𝑑𝑑𝑒𝑒𝑡𝑡𝑉𝑉(78.98, 32.51) = 1.106756. Therefore, the 
characteristic roots of the variational matrix 𝑉𝑉(78.98, 32.51) 
are the roots of the equation 𝜆𝜆2 + 4.187128𝜆𝜆 + 1.106756 =
0. Sum of the roots of this equation is negative and the 
product of the roots is positive and the discriminant  of this 
equation is 13.431 > 0. So all the characteristic roots of the 
variational matrix 𝑉𝑉(78.98, 32.51) are real and negative. 
Therefore the non-trivial equilibrium point 𝑃𝑃2(78.98, 32.51) 
of the dynamical system (3) is a stable node. Since the effort 
is less than the prey BTP, so by theorem 2, the dynamical 
system (3) does not possess any limit cycle in the region 𝑅𝑅2

+ 
and so 𝑃𝑃2(78.98, 32.51) is globally asymptotically stable 
node in 𝑅𝑅2

+. 
Let the fishing cost per unit effort is 𝑐𝑐𝑝𝑝 = 30, the price per 
unit biomass of the prey and predator species are 𝑝𝑝1 =
3 and 𝑝𝑝2 = 6 respectively in appropriate units. Therefore, 
the equation (18) becomes 𝑥𝑥2 − 32.167𝑥𝑥 − 785.68 = 0. The 
only positive root of this equation is 𝑥𝑥∞ = 48.40. For this 

value of 𝑥𝑥∞, we have from (19), 𝑦𝑦∞ = 54.14 and 𝐸𝐸∞ = 14.63, 
by (20). Therefore, (48.40, 54.14, 14.63) be the bionomic 
equilibrium of the system (3). 
 
6. CONCLUSION: 
In this paper, the Beddington-DeAngelis functional 
response is considered instead of frequently used Holling 
types I,II,III functional responses. This functional response 
is more realistic due to presence of one extra term y in the 
denominator of the functional response which describes 
mutual interference by the predators. Biological 
interpretation of this functional response is, in the increase 
of the prey species the predator feeding rate increases and 
in the increase of the predator species the feeding rate 
decreases due to interspecies competitions. It has been 
shown that the boundary equilibrium of the dynamical 
system exists when the effort less than the prey BTP and the 
interior equilibrium point of the system exists when the 
harvesting effort less than a certain level. So considering the 
other parameter values the regulatory agencies determine 
the maximum effort level for existence of the non-trivial 
equilibrium point. It is also proved that when the prey 
population is below a certain level then the predator 
population exponentially dies out. 
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